Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles.

نویسندگان

  • Philippe Leroy
  • Nicolas Devau
  • André Revil
  • Mohamed Bizi
چکیده

Zeta potential is a physicochemical parameter of particular importance in describing ion adsorption and double layer interactions between charged particles. However, for metal-oxide nanoparticles, the conversion of electrophoretic mobility measurements into zeta potentials is difficult. This is due to their very high surface electrical conductivity, which is inversely proportional to the size of the particle. When surface conductivity is similar to or higher than the electrical conductivity of bulk water, it can significantly lower the electrophoretic mobility of the particles. It follows that the magnitude of the apparent zeta potential determined from the Smoluchowski equation (disregarding surface conductivity) can be grossly underestimated. We use a basic Stern model to describe the electrochemical properties and to calculate the true zeta potential of amorphous silica nanoparticles immersed in NaCl solution. The parameters of our surface complexation model are adjusted by potentiometric titration and electrophoretic mobility measurements at high salinity (10(-1)M NaCl). Electrophoretic mobilities are calculated using Henry's electrokinetic transport model with specific surface conductivities and zeta potentials estimated by our surface complexation model. The very good agreement of calculated and measured electrophoretic mobilities confirms that the true zeta potential corresponds to the electrical potential at the outer Helmholtz plane (OHP). Consequently, the shear plane might be located close to the OHP. The assumption of the presence of a stagnant diffuse layer at the amorphous silica/water interface is therefore not required.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Surface Chemistry Modification using Zwitterionic Coatings on the Surface of Silica Nanoparticles on Prevention of Protein Corona: A Test Study

Objective(s): The purpose of this study was investigation of the protein corona formation on the surface of zwitterionic nanoparticles when they exposed to bio-fluid like human plasma.Methods: Silica nanoparticles with zwitterionic surface coating, cysteine and sulfobetaine were employed as zwitterionic ligands, were synthesized and characterized in terms of physicochemical properties. To...

متن کامل

Rice Straw Ash-A Novel Source of SilicaNanoparticles

In this study chemical method of dissolution-Precipitation was applied to produce amorphous silica nanoparticles from rice straw ash (RSA), the waste material of rice cultivation. The morphology, particle size, structure and area of specific surface of synthesized amorphous silica nanoparticles were evaluated using transmission electron microscopy (TEM), X-ray diffraction analysis (XRD) and BET...

متن کامل

Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles.

Zeta potential is a physico-chemical parameter of particular importance in describing ion adsorption and electrostatic interactions between charged particles. Nevertheless, this fundamental parameter is ill-constrained, because its experimental interpretation is complex, particularly for very small and charged TiO(2) nanoparticles. The excess of electrical charge at the interface is responsible...

متن کامل

Modification of Silica surface by Titanium sol synthesis and characterization

Hydrophobic silica titanium nanoparticles (STNPs) were successfully synthesized by the sol-gel process using liquid modification. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) studies were demonstrated the attachment of titanium on the silica surface. Titanium content enhanced the agglomeration of particles as shown in topography results. The N2 adsorption-desorption followed T...

متن کامل

Modification of Silica surface by Titanium sol synthesis and characterization

Hydrophobic silica titanium nanoparticles (STNPs) were successfully synthesized by the sol-gel process using liquid modification. Fourier transform infrared (FTIR) and X-ray fluorescence (XRF) studies were demonstrated the attachment of titanium on the silica surface. Titanium content enhanced the agglomeration of particles as shown in topography results. The N2 adsorption-desorption followed T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 410  شماره 

صفحات  -

تاریخ انتشار 2013